Telegram Group & Telegram Channel
Что такое Local Sensitive Hash (LSH) и где он используется?

Это алгоритм, предназначенный для поиска ближайших соседей в больших наборах данных. Основывается на идее использования хеш-функции, которая переводит близкие объекты в один бакет (корзину).

У подходящих хеш-функций вероятность коллизии на близких объектах должна быть высокая, а на далёких — низкая. Иными словами, одинаковые хеш-значения должны с более высокой вероятностью присваиваться близким по некоторой метрике объектам.

При поиске ближайшего соседа для нового объекта сначала вычисляется его хеш-значение, а затем поиск ограничивается объектами в соответствующем бакете. Это позволяет значительно сократить объём данных, по которым необходимо провести поиск, а значит увеличить скорость обработки запросов.

LSH можно использовать в задачах, где требуется быстро находить похожие элементы в больших объёмах данных, например при поиске дубликатов документов или изображений в большом корпусе данных.

#машинное_обучение



tg-me.com/ds_interview_lib/230
Create:
Last Update:

Что такое Local Sensitive Hash (LSH) и где он используется?

Это алгоритм, предназначенный для поиска ближайших соседей в больших наборах данных. Основывается на идее использования хеш-функции, которая переводит близкие объекты в один бакет (корзину).

У подходящих хеш-функций вероятность коллизии на близких объектах должна быть высокая, а на далёких — низкая. Иными словами, одинаковые хеш-значения должны с более высокой вероятностью присваиваться близким по некоторой метрике объектам.

При поиске ближайшего соседа для нового объекта сначала вычисляется его хеш-значение, а затем поиск ограничивается объектами в соответствующем бакете. Это позволяет значительно сократить объём данных, по которым необходимо провести поиск, а значит увеличить скорость обработки запросов.

LSH можно использовать в задачах, где требуется быстро находить похожие элементы в больших объёмах данных, например при поиске дубликатов документов или изображений в большом корпусе данных.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/230

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Библиотека собеса по Data Science | вопросы с собеседований from it


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA